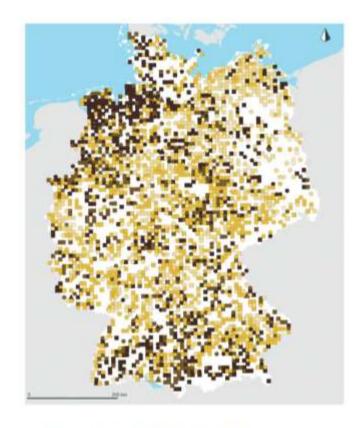


Inhalt

- 1. Begrüßung & Kennenlernen (25 min)
- 2. Aggregatstabilitäts-Test (15 min)
- 3. Vortrag "Neue Humustheorie. Verantwortungsvolle Bodenpflege in Zeiten des Klimawandels." (50 min)
- 4. PAUSE (15 min)
- 5. Vortrag "Schwammregion Soonwald-Nahe" (Dr. N. Weißmann)
- 6. Workshopphase (50 min)



Uns geht der Boden unter den Füßen verloren!

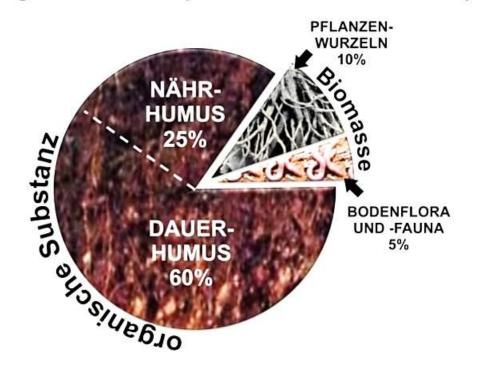
Bodenzustandserhebung Thünen-Institut (2018)

- Deutschlands Agrarböden speichern 2,6 Mrd. Tonnen C
- Humusgehalte in Ackerböden: ca. 55 % = 2-4 %, ca. 25 % = < 2 %
- Humusgehalte in Dauergrünland: 4-8 %
- optimal für Ackerböden > 5 %
- Äcker sind i.d.R. auf ehemaligen Auen oder Waldböden angelegt (Humusgehalt mind. 4 % und bis zu 8-10 %)
- Böden weltweit haben <u>50 80 %</u> ihres Humusgehaltes durch Ackerbau und Übernutzung verloren, Trend weiter abwärts (Bodenatlas, 2024) → riesiger Treiber der Klimakrise, bitterer Verlust für die landw. Produktion

- O < 30 O 30-50
- 70-90

Warum ist Humus wichtig?

- Wasserspeicherung & Wasserinfiltration
- Krümeligkeit
- Bodenstruktur
- Porosität
- Nährstoffe
- Lebensraum fürs Bodenleben
- Kohlenstoffsenke
- Durchwurzelbarkeit
- Leichtere Bearbeitbarkeit
- Befahrbarkeit
- ...


Boden und Humus

Bodenbestandteile (% Volumen)

Organischer Anteil (% Gewicht Trockensubstanz)

Veraltete Darstellung von Humus!

Was ist Humus?

STIFTUNG LEBENSRAUM MENSCH. BODEN. WASSER, LUFT

Organische Inputs Respiration Wurzelexsudate (Erntereste, Wurzelreste, Wirtschaftsdünger etc.) Abgestorbene Zellen, Sorption Exsudate Aufnahme Bodenmikrobiom Aufnahme Exoenzyme Desorption

Aktiver PoolLabiler Pool

Stabiler Pool

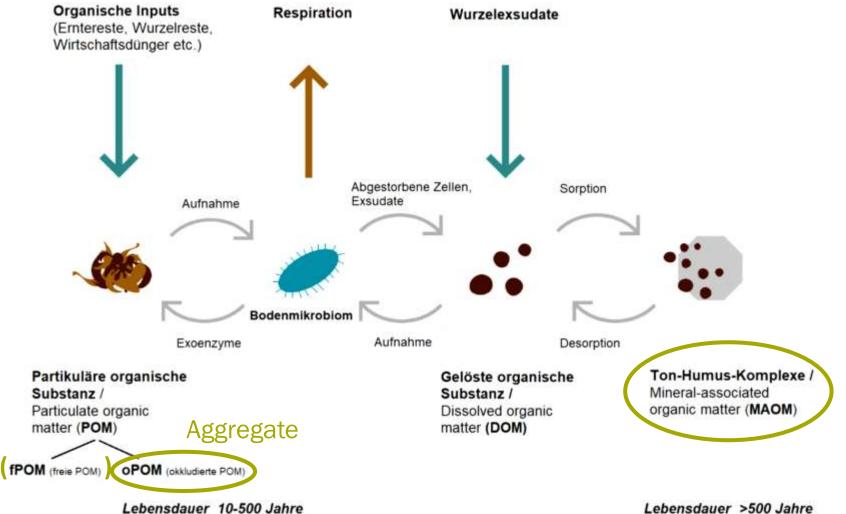
Humus ≠ Kompost

Gelöste organische Substanz / Dissolved organic matter (DOM) Ton-Humus-Komplexe / Mineral-associated organic matter (MAOM)

Partikuläre organische Substanz / Particulate organic matter (POM)

fPOM (freie POM) oPOM (okkludierte POM)

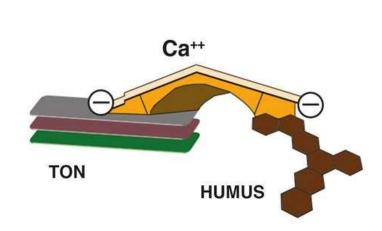
Was ist Humus?



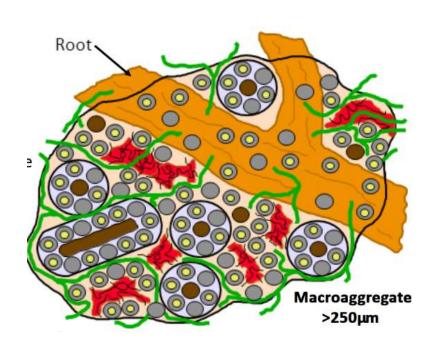
- Humus ist ein Fließgleichgewicht
- Humus ist die Summe aller organischen Substanzen im Boden, in der Definition häufig ohne die aktuell lebenden Organismen
- Aber: Es ist schwer, die lebenden von den "leblosen" organischen Stoffen klar zu trennen
- Humus kann z.B. in Form von Wurzelexsudaten, gelösten organischen Stoffen, partikulären organischen Stoffen, neu synthetisierten organischen Stoffen, Klebstoffen, ..., jeweils mineralisch beschützt oder ungeschützt vorliegen
- Alle Humuspools unterliegen ständigen Umwandlungsprozessen
 - → Manche laufen schneller ab, andere langsamer
- Es ist unser Ziel, stabile Humuspools zu vergrößern, ohne die Umsetzbarkeit von organischem Material und die Nährstoffmineralisierung zu beeinträchtigen

Was ist stabiler Humus?

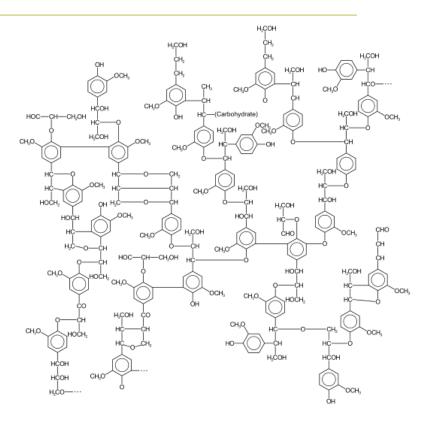
MENSCH. BODEN. WASSER. LUFT



Schwer abbaubare Moleküle

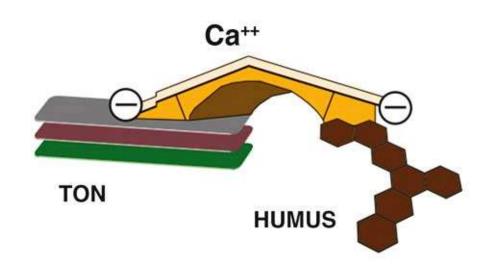

Was ist stabiler Humus?

STIFTUNG LEBENSRAUM


MENSCH. BODEN. WASSER.LUFT

1. Ton-Humus-Komplexe

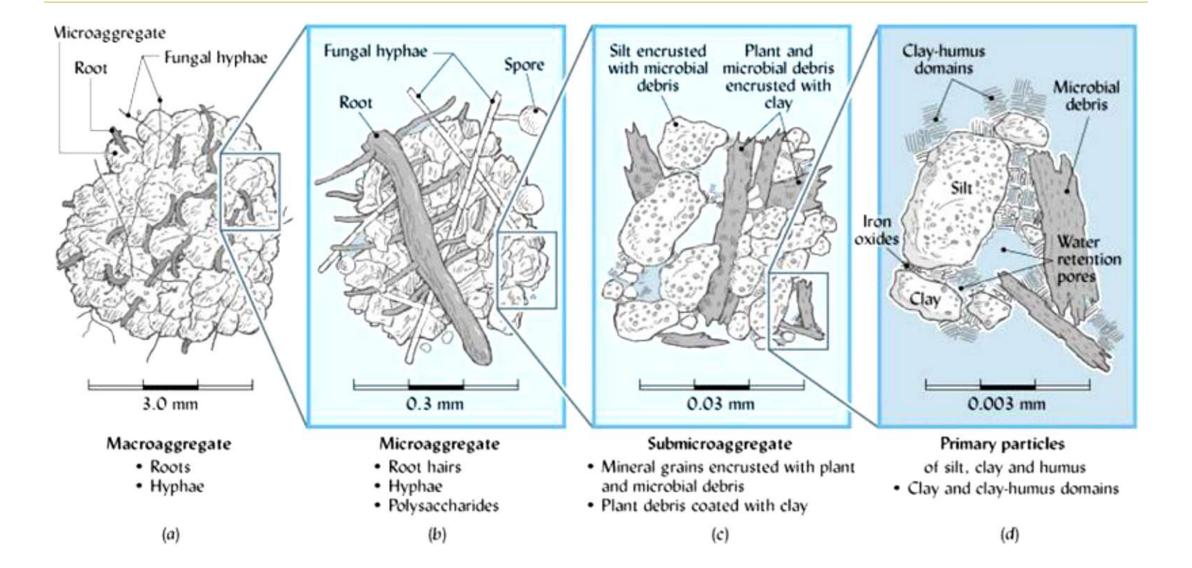
2. Aggregate (Krümel)


(3. Schwer abbaubare Moleküle (Rekalzitranz))

1. Ton-Humus-Komplexe

Bildung durch:

- Vorhandensein von ausreichend Ca²⁺
- Vorhandensein von ausreichend organischem Futter (Wurzelexsudate & totes org. Material)
- Aktivität von Bodenorganismen
 - Regenwürmer
 - Enchyträden (Weißwürmer)
 - Springschwänze, etc.



→ Einfach mehr Kalken ist keine Lösung!

2. Aggregate

STIFTUNG LEBENSRAUM

MENSCH. BODEN. WASSER. LUFT

2. Aggregate

Microaggregate

Root

STIFTUNG LEBENSRAUM M E N S C H . B O D E N . W A S S E R . L U F T Clay-humus domains Microbial debris Water retention pores 003 mm ary particles clay and humus and clay-humus domains

(d)

Ton-Aufflockung

Fungal hyphae

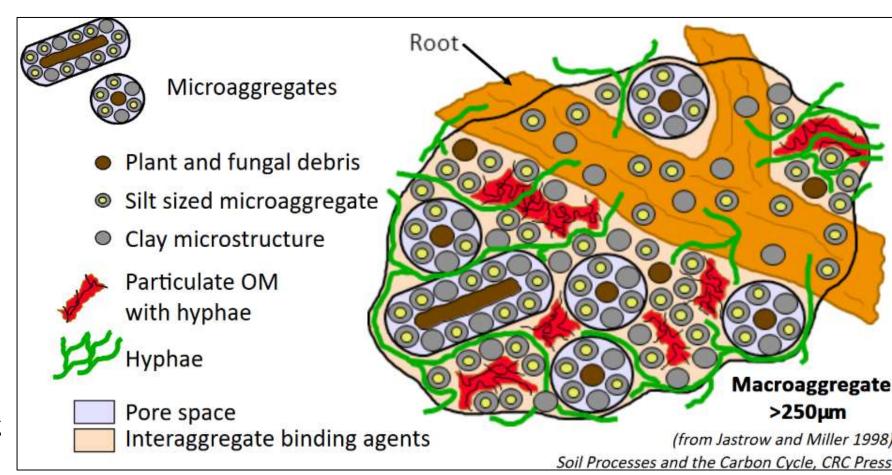
• Elektrostatische Bindungen, Van der

Fungal hyphae

Root

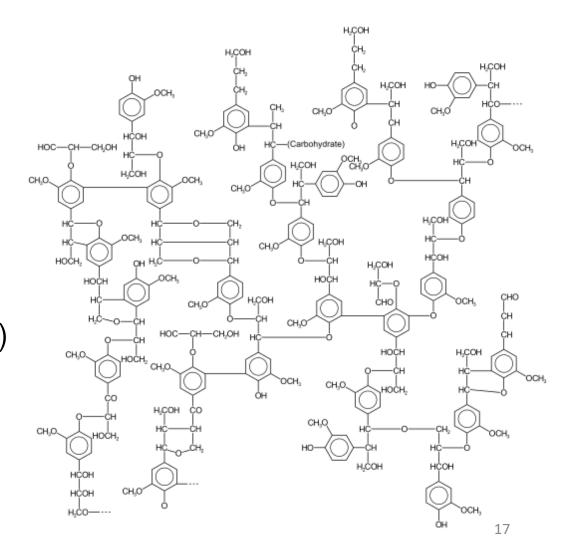
Waals Wechselwirkungen

Bakterienfilme


• Integration in Makroaggregate

Makro- und Mikroaggregate

Wie erreiche ich Aggregatbildung?


- Organische Inputs
- Aktivität von Bodenorganismen (Pilze & Bakterien machen Klebstoff!)
- Geringe Bodenbearbeitung
- → Krümeligkeit, Porosität C-Speicher, Wasserspeicher, Lebensraum für Mikrobiom
- → Zerstörung durch Bodenbearbeitung

3. Schwer abbaubare Moleküle (Rekalzitranz)

- Lignin, Hemicellulose, Cellulose →
 Abbau zu:
 - Fulvosäuren
 - Huminsäuren
 - Humin
 - → Einbau in Aggregate!
 - → Unbeschützt werden auch diese Stoffe rückstandslos abgebaut
- Pyrogener Kohlenstoff (Pflanzenkohle)
 - Global Ø 13,7 Prozent pyrogener Kohlenstoff (PyC) im Humus von Böden (Schweiz: 6 Prozent)
 - Verweildauer von PyC im Boden: 2.760 bis 14.500 Jahre

Ist Humusaufbau möglich?

→ Ja! ABER: komplex und ortsabhängig!

Für den Humusaufbau brauchen Böden

- Lebende Pflanzenwurzeln (Wurzelexsudate!)
- Eine vielfältige Bodenfauna und ein intaktes Nahrungsnetz im Boden
- Organische Düngung, ohne Giftstoffe, mit guter Substratbiologie und geeignetem C/N
- Eine ständige Nachlieferung von verstoffwechselbaren und immobilisierbaren organischen Verbindungen
- Die Abwesenheit von humusabbauenden Faktoren (massive Bodenbearbeitung, Ackergifte, Mineraldünger, hohe Temperaturen, ...)
- → Humusauf- und -abbau ist eine ewige Gleichgewichts-Findung: es kommt auf das richtige Verhältnis aus stabilem und labilem Humus an!

Was baut Humus ab?

- Hitze (30°C+)
- Unzureichende Ernährung des Bodenlebens
 - Fehlen von lebenden Pflanzenwurzeln
 - Wenn länger als 2 Wochen keine lebenden Pflanzenwurzeln Exsudate ans Bodenleben abgeben, sterben Mykorrhiza-Hyphen ab
 - 70 80 % des C im Humus borealer Wälder stammt aus Wurzelexsudaten und <u>nicht</u> aus Zersetzung der Nadelstreu
 - Zu geringe Durchwurzelung
 - Nur einjährige Kulturen können nicht schnell genug in tiefe Bodenschichten vordringen \rightarrow zu geringe Bodendurchwurzelung, Mangelernährung der Pflanzen
 - Fehlen von organischem Futter
- Intensive Bodenbearbeitung, Verdichtung
- Erosion
- Einige Pflanzenschutzmittel und Herbizide

Wie kann Humus stabilisiert und aufgebaut werden? (1)

STIFTUNG LEBENSRAUM MENSCH.BODEN.WASSER.LUFT

Ständig lebende Pflanzenwurzeln (ständige Bodenbedeckung, hohe Artenvielfalt)

- Erweiterte Fruchtfolge
- Beisaaten
- Untersaaten
- Zwischenfrüchte
- Dauerkulturstreifen
- Mehrjährige Gründüngungen
- Agroforstwirtschaft
- Wintergetreide anders handhaben

Wie kann Humus stabilisiert und aufgebaut werden? (2)

- Hochwertige organische Düngung
- Minimierte Bodenbearbeitung
 - Seltenere Überfahrten
 - Geringere Achslast
 - Untersaaten
 - Direktsaat
 - Mulchsaat/Flächenrotte
 - Walzen statt fräsen (Weinbau)
 - ...
- Auf Dauer falls möglich: Reduktion des Pflanzenschutzmitteleinsatzes
- Dammkultur, Mobgrazing, ...

Das Projekt

- Projektkoordination Stiftung Lebensraum (Jule Schwartz)
- Projektpartner (inhaltlich, nicht finanziell!)
 - Regionalbündnis Soonwald Nahe
 - Projektteam Schwammregion Soonwald Nahe
 - Klimaschutzmanagements Stadt und Kreis Bad Kreuznach
 - Dienstleistungszentrum ländlicher Raum (Schiller, Huth)
 - Ländliche Erwachsenenbildung e.V.
 - LAG anderes lernen
 - Ökologische Wissensakademie (Chr. Felgentreu)
 - Netzwerke der regenerativen Landwirtschaft (Aufbauende LW, Regenerate, ...)

Das Projekt

2 Projektsäulen

- 1. Erosionsvorsorgekurse Dialog und Schulung
 - Finanziert durch das Ministerium für Arbeit, Soziales, Transformation und Digitalisierung RLP mit 24.378,54 € (2.437,85 € Eigenmittel)
 - Personalausgaben und Bildungsarbeit
 - Laufzeit zunächst bis Ende 2025, Verlängerung wird angestrebt
- 2. Umsetzung von Erosionsvorsorgemaßnahmen
 - Fördergelder voraussichtlich vom Kompetenzzentrum natürlicher Klimaschutz (KNK), ANK Förderung
 - Um die 500.000 € für unterschiedliche Vorhaben
 - Z.B. Agroforstsysteme, Untersaatsaatgut, Direktsaatmaschine, ...

Das Projekt

Mit dem Projekt möchten wir Ihnen langfristig Folgendes bieten

- Fachliche Beratung und Bildungsangebote durch die Stiftung Lebensraum, das Dienstleistungszentrum ländlicher Raum und weitere Fachleute
- Austausch mit Fachkolleg*innen; Lernen von Erfahrungen anderer Landwirt*innen und Winzer*innen, die sich schon länger an sogenannten "regenerativen Maßnahmen" probieren
- Finanzielle Unterstützung für die Ergreifung von Erosionsvorsorgemaßnahmen, die Sie für sinnvoll halten und gerne mal ausprobieren würden (Finanzierung: Fördergelder privater Stiftungen und Bundesfördertöpfe)

Mögliche Ausgestaltung in Burgsponheim

- 1. Vernetzungs- und Kennenlerntreffen, erste Ideen sammeln (15.03.)
- Ortsbegehung gemeinsam mit Fachleuten von DLR und Landwirtschaftsberater Rolf Kern → Konkrete Maßnahmenvorschläge gemeinsam entwickeln
- 3. Individuelle Betreuung des Landwirts/Winzers/der Bürgergruppe für sein/ihr konkretes Projekt, Ko-Finanzierung falls gewünscht und erforderlich
- Erneute Ortsbegehung mit allen Anwesenden → Voneinander lernen, Erfahrungsaustausch, Bewertung des bis hierhin geschafften

Ein paar Beispiele

STIFTUNG LEBENSRAUM

M E N S C H . B O D E N . W A S S E R . L U F T


boden:ständig, Ansberg, Bayern

https://boden-staendig.eu

Ein paar Beispiele

Hengstbacherhof

Quellenverzeichnis

- https://www.bauernzeitung.ch/artikel/pflanzen/kuehe-in-diefruchtfolge-integrieren-468142
- https://www.agrarheute.com/technik/ackerbautechnik/kverneland -enduro-grubber-557609
- https://rolofaca.fr,
 https://www.ecosia.org/images?q=rolofaca#id=34BCC5DD99FE7
 69FF71C3C4D200CFF212E509FFD
- https://humuscheck.thuenen.de
- https://geobox-i.de/GBV-RLP/
- https://boden-staendig.eu/